编辑:
2015-01-22
(2)证明: 四边形 和四边形 都是平行四边 形,
.∴DE=AB,AF=DC
.∵AB=DC∴DE=AF
又 四边形 是平行四边形,∴四边形 是矩形.
备用题:
1. C; 2.B ; 3.D ; 4. A; 5. ;
6.符合题设条件的三角形既可能是锐角三角形,也可能是钝角三角形,故应运用分类讨论思想求解.
(1)当△ABC为锐角三角形,如图(1),这时高AD在△ABC的内部,
在Rt△ABD中,由勾股定理得
在Rt△ACD中,由勾股定理得
这时BC=BD+CD=7+18=25
(2)当△ABC为钝角三角形,如图(2),这时高AD在△ABC的外部,
同样求得BD=7,CD=18,这时BC=CD-BD=18-7=11
所以第三边BC的长为25或11.
7.证明:如图,连结AC、BD.∵ PQ为△ABC的中位线,
∴ PQ AC.同理 MN AC.∴ MN PQ,
∴ 四边形PQMN为平行四边形.
在△AEC和△DEB中,AE=DE,EC=EB,∠AED=60°=∠CEB,
即 ∠AEC=∠DEB.∴ △AEC≌△DEB.∴ AC=BD.
∴ PQ= AC= BD=PN ∴ □PQMN为菱形.
因为AE= ,AB= ,所以有 .
②三者之间的关系为 >
这篇初中三年级数学期末卷就为大家分享到这里了。更多相关内容请点击查看九年级数学期末试卷,同时,更多的初三各科的期末试卷尽在九年级期末试卷,预祝大家都能顺利通过考试!
好消息:精品学习网为了方便各地的初中生相互学习和交流,特地建立了QQ群【117367168】,欢迎广大学生尽快来加入哦!希望通过这个平台我们的成绩会有新的突破!!!
标签:数学试卷
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。