您当前所在位置:首页 > 初中 > 初三 > 数学 > 数学试卷

九年级数学上册用公式法求解一元二次方程同步试卷含答案(北师大版)

编辑:

2016-09-14

故选D.

【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.

10.若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k的取值范围是(  )

A.k≥ B.k> C.k< D.k≤

【考点】根的判别式.

【专题】计算题.

【分析】先根据判别式的意义得到△=(2k﹣1)2﹣4(k2﹣1)≥0,然后解关于k的一元一次不等式即可.

【解答】解:根据题意得△=(2k﹣1)2﹣4(k2﹣1)≥0,

解得k≤ .

故选D.

【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.

11.关于x的一元二次方程x2+x+m=0有实数根,则m的取值范围是(  )

A.m≥ B.m≤ C.m≥ D.m≤

【考点】根的判别式.

【分析】方程有实数根,则△≥0,建立关于m的不等式,求出m的取值范围.

【解答】解:由题意知,△=1﹣4m≥0,

∴m≤ ,

故选D.

【点评】本题考查了根的判别式,总结:1、一元二次方程根的情况与判别式△的关系:

(1)△>0⇔方程有两个不相等的实数根;

(2)△=0⇔方程有两个相等的实数根;

(3)△<0⇔方程没有实数根.

12.下列方程有两个相等的实数根的是(  )

A.x2+x+1=0 B.4x2+2x+1=0 C.x2+12x+36=0 D.x2+x﹣2=0

【考点】根的判别式.

【分析】由方程有两个相等的实数根,得到△=0,于是根据△=0判定即可.

【解答】解:A、方程x2+x+1=0,∵△=1﹣4<0,方程无实数根;

B、方程4x2+2x+1=0,∵△=4﹣16<0,方程无实数根;

C、方程x2+12x+36=0,∵△=144﹣144=0,方程有两个相等的实数根;

D、方程x2+x﹣2=0,∵△=1+8>0,方程有两个不相等的实数根;

故选C.

【点评】本题考查了一元二次方程根的情况与判别式△的关系:

(1)△>0⇔方程有两个不相等的实数根;

(2)△=0⇔方程有两个相等的实数根;

(3)△<0⇔方程没有实数根

13.下列一元二次方程中有两个不相等的实数根的方程是(  )

A.(x﹣1)2=0 B.x2+2x﹣19=0 C.x2+4=0 D.x2+x+l=0

【考点】根的判别式.

【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.

【解答】解:A、△=0,方程有两个相等的实数根;

B、△=4+76=80>0,方程有两个不相等的实数根;

C、△=﹣16<0,方程没有实数根;

标签:数学试卷

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。