编辑:
2015-04-13
(3)解法一:如图,以C为原点,以AC所在直线为x轴,建立平面直角坐标系.
依题意,可知 ,当t=0时,M1的坐标为(3,0);
当t=4时,过点M2作 轴于点N,则 , .
∴M2的坐标为(1,4).
设直线M1M2的解析式为 ,
∴ 解得
∴直线M1M2的解析式为 .
∵Q(0,2t)、P( ,0).
∴在运动过程中,由三角形相似得:
线段PQ中点M3的坐标为( ,t).
把 代入 ,得 =t.
∴点M3在直线M1M2上.
由勾股定理得: .
∴线段PQ中点M所经过的路径长为 单位长度.
解法二:如图3,当 时,点M与AC的中点E重合.
当 时,点Q与点B重合,运动停止.设此时PQ的中点为F,连接EF.
过点F作FH⊥AC,垂足为H.由三角形相似得: , ,
∴ ,∴ .
过点M作 ,垂足为N,则 ∥ .
∴△ ∽△ .
∴ ,即 .
∴ , .
∴ .
∴ .
∴当t≠0时,连接ME,则 .
∵ 的值不变.∴点M在直线EF上.
上文中给大家分享了中考数学模拟试题及答案的信息,希望能够帮助大家。
相关推荐
标签:合肥中考试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。