您当前所在位置:首页 > 初中 > 初二 > 数学 > 数学试卷

15-16学年初二年级上册数学期中测试题

编辑:sx_jixia

2015-10-27

转眼间,开学已经两个月了,还有几天就要期中考试了。这是我们本学期的第一次大型考试。不少同学十分紧张,看看书本,学了不少知识,但所剩时间不多。如何搞好期中复习,下文为初二年级上册数学期中测试题

一、填空题(本 题共10小题,每小题填对得3分,共30分.只要求填写最后结果)

1.计算: + =      .

2.方程x2﹣4x=0的解为      .

3.2013年某市人均GDP约为2011年的1.21倍,如果该市每年的人均GDP增长率相同,那么该增长率为      .

4.如图,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MM=20m,那么A,B两点间的距离是      .

5.已知一组数据:1,a,3,6,7,它的平均数是4,这组数据的众数是      .

6.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是      .

7.一个多边形的每一个外角都等于30°,则该多边形的内角和等于      .

8.李娜在一幅长90cm宽40cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整个挂图面积的54%,设金色纸边的宽度为xcm,根据题意,所列方程为:      .

9.已知y= +2 ,若x是整数,则y的最小值是      .

10.已知直线y=kx+b(k<0)与x、y轴交于A、B两点,且与双曲线y=﹣ 交于点C(m,2),若△AOB的面积为4,则△BOC的面积为      .

二、选择题(本题共6小题,在每小题给出的四个选项中,只有一项是正确的,每小题3分,共18分,)

11.化简 的结果是(  )

A. ﹣2 B. ±2 C. 2 D. 4

12.已知一个直角三角形的两条边长恰好是方程x2﹣5x+6=0的两根,则此三角形的斜边长为(  )

A.   B. 13 C.   D.  或3

13.下列二次根式不能再化简的是(  )

A.   B.   C.   D.

14.下列命题错误的是(  )

A. 平行四边形的对角相等

B. 对角线互相垂直的四边形是菱形

C. 两条对角线相等的平行四边形是矩形

D. 等腰梯形的对角线相等

15.如图,直线y=mx与双曲线y= 交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是(  )

A. 2 B. m﹣2 C. m D. 4

16.如图,在菱形ABCD中,E,F分别是边AB和BC的中点,EP⊥CD于点P,设∠A=x°,则∠FPC=(  )

A.  (  )° B. ( )° C. ( )° D. ( )°

三、解答题(本大题有6小题,共52分)

17.(1)化简:3 ﹣9( ﹣ );

(2)解方程:(x﹣3)2=(2x﹣1)(x﹣3).

18.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限,近似地满足如下的关系式:d=7× (t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.

(1)计算冰川消失16年后苔藓的直径;

(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?

19.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?

20.为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):

类型 一 二 三 四 五 六 七 八 九 十

甲种电子钟 1 ﹣3 ﹣4 4 2 ﹣2 2 ﹣1 ﹣1 2

乙种电子钟 4 ﹣3 ﹣1 2 ﹣2 1 ﹣2 2 ﹣2 1

(1)计算甲、乙两种电子钟走时误差的平均数;

(2)计算甲、乙两种电子钟走时误差的方差;

(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?

21.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.

(1)判断四边形ABDF是怎样的四边形,并说明理由;

(2)若AB=6,BD=2DC,求四边形ABEF的面积.

22.如图,已知直线y= x与双曲线 交于A,B两点,且点A的横坐标为4.

(1)求k的值;

(2)若双曲线 上一点C的纵坐标为8,求△AOC的面积;

(3)过原点O的另一条直线l交双曲线 于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.

标签:数学试卷

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。