编辑:
2015-11-05
21.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F ,使EF=AE,连接AF、BE和CF.
(1)判断四边形ABDF是怎样的四边形,并说明理由;
(2)若AB=6,BD=2DC,求四边形ABEF的面积.
考点: 平行四边形的判定与性质;等边三角形的判定与性质;勾股定理.
专题: 证明题.
分析: (1)等边三角形的三边相等,三个角也相等,根据等边三角形的性质能证明AF∥BD,AB∥FD,所以四边形ABDF是怎样的四边形.
(2)过点E作EG⊥AB于点G,可求出EG的长,面积可求.
解答: 解:(1)∵CD=CE,∠BCA=60°,
∴△DEC是等边三角形,
∴∠DEC=∠EDC=∠AEF=60°,
∵△ABC是等边三角形,
∴∠ABC=60°,
∴AB∥DF,
∵EF=AE,∠AEF=60°,
∴△AEF是等边三角形,
∴∠AFD=60°,
∴BD∥AF,
∴四边形ABDF是平行四边形;
(2)∵四边形ABDF是平行四边形,
∴EF∥AB,且EF≠AB,
∴四边形ABEF是梯形.
过点E作EG⊥AB于点G,
∵BD=2DC,AB=6,
∴AE=BD=EF=4,
∵∠AGE=90°,∠BAC=60°,
∴∠AEG=30°,
∴AG= AE=2,
EG= = =2 ,
∴S= (4+6)×2 =10 .
点评: 本题考查等边三角形的性质和判定,勾股定理,平行四边形的判定和性质等.
为大家推荐的八年级上册期中数学试题的内容,还满意吗?相信大家都会仔细阅读,加油哦!
相关推荐
标签:数学试卷
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。